Test Suite for the
CAX Implementor Forum
Round 31J

October 2012 – March 2013

Release 1.0

December 19, 2012

Contacts

Jochen Boy
ProSTEP iViP Association
Dolivostraße 11
64293 Darmstadt / Germany
jochen.boy@prostep.com

Phil Rosché
PDES, Inc.
5300 International Blvd.
North Charleston, SC 29418 USA
phil.rosc@scra.org
Table of Contents

1. Introduction .. 3
 1.1 Functionality tested in this round ..3
 1.2 General testing instructions for this round ..4
 1.3 Testing Schedule ..4
 1.4 Copyrights on test cases ...5

2. Synthetic Test Case Specifications .. 5
 2.1 Model PP3: PMI Polyline Presentation ..5
 2.2 Model TP3: PMI Tessellated Presentation ...9
 2.3 Model SP3: Semantic PMI Representation ...11
 2.4 Model C2: Geometric Validation Properties and Colors ...15
 2.5 Model TS1: STEP 3D Tessellated Geometry ...18

3. Production Models ..21
 3.1 PM28 ..21
1 Introduction

This document describes the suite of test cases to be used for the thirty-first round of testing of the CAx Implementor Forum (CAx-IF). The CAx-IF is a joint testing forum organized by PDES, Inc., and the ProSTEP iViP Association. The test rounds of the CAx-IF concentrate primarily on testing the interoperability and conformance of STEP processors based on AP203, AP214, and AP242.

The test rounds in general combine testing of synthetic and production models. Production models will in most cases be provided by the member companies of the organizations PDES, Inc. and ProSTEP iViP Association. When production models are not available from the member companies, "production-like" models will be solicited from the various CAx-IF participants.

This test suite includes synthetic models for testing the following capabilities: Product Manufacturing Information (PMI), both in graphic form (Polylines or Tessellated Geometry) and as Semantic Representation, Geometric Validation Properties, and Model Styling.

Production models are provided for assemblies and piece parts. The basis for the production test cases is native CAD models. Each test case therefore originates from a single CAD system, and the set of test cases to be pre-processed (converted to STEP files) is unique for each CAD system. After pre-processing, the resulting STEP files are then to be imported/post-processed/read in by the rest of the participants.

1.1 Functionality tested in this round

Functionality tested in this round relates to:

- **Product Manufacturing Information (PMI)** describes the capability to embed information about dimensions, tolerances and other parameters which are necessary input for the manufacturing and measuring of the part from the 3D model. In Round 31J, the focus will be on the two main approaches for the transfer of PMI in the 3D model:
 - "Graphic Presentation" refers to breaking down each annotation either into poly-lines and arcs or into tessellated elements, and exchanging them as geometry. This preserves the exact shape of the annotation, but is human readable only.
 - "Semantic Representation" refers to the intelligent transfer of PMI data in an associative and re Usable way. This scenario aims towards downstream usage and later modifications of the model. The data is machine-readable, but not immediately visible in the 3D model.
 - In Round 31J, both capabilities will include section views with multiple section planes and linking PMI representation with presentation.

- **Geometric Validation Properties** is a mechanism to allow the exchange of geometric properties and their assignment to geometric representations for the purposes of data exchange validation. The typically considered properties volume, surface area and centroid have been extended by the value for total length of independent curves in the model, to which the independent curve centroid is added in Round 31J.

- **Colors** are a well-established capability in STEP. They are added again to the scope of this round to verify the updated approach using the global draughting model, which is derived from and harmonized with the PMI Recommended Practices. The scope was extended recently to support Point Color and Point Style, which will be tested again in Round 31J.
• **Tessellated Geometry** is a simplified representation for the part shape, where the geometry is not given as an exact B-Rep model, but as a collection of simple planar faces (triangles) which can be easily and efficiently created and applied in specific use cases. In Round31J, the scope will also include the watertight tessellation format (WTF).

• **Production Models** will be included in this round of testing if available, in addition to the synthetic models for the above capabilities.

1.2 General testing instructions for this round

The general procedures for communication of models and statistics are outlined in a separate document ‘General Testing Instructions’. The general instructions can be retrieved from the CAX Implementor Forum web sites. The latest version is v1.9, dated May 2011.

1.3 Testing Schedule

The following schedule has been agreed on for Round 31J:

![CAx-IF Round31J Schedule](chart.png)

The CAX-IF Technical Workshop will be held in conjunction with a LOTAR meeting. Conference calls and web sessions will also be available.

The CAX-IF R31J Review meeting will take place in conjunction with the PDES, Inc. Spring Off-site meeting and a LOTAR workshop. In addition, conference calls and web sessions will be available for those not attending the meeting to dial in.
1.4 Copyrights on test cases

None of the production test cases which were provided by the PDES, Inc. and ProSTEP iViP member companies are released for any purpose. The test cases can be freely distributed among the CAx-IF members, and can be used for any purposes that are related to CAx-IF testing (i.e. testing, documentation of testing efforts), as long as a reference to the originating company is made.

The test cases must not be used for any purposes other than the CAx-IF testing or outside of PDES, Inc. and ProSTEP iViP. Test cases provided by the LOTAR project for CAx-IF testing of specific capabilities underlie the same restrictions and may not be used outside LOTAR or CAx-IF.

2 Synthetic Test Case Specifications

2.1 Model PP3: PMI Polyline Presentation

All information about this test case can also be viewed in CAESAR on its Information page.

2.1.1 Motivation

Product Manufacturing Information is required for a number of business use cases in the context of STEP data exchange. Among others, they are a prerequisite for long-term data archiving. In addition, the PMI can be used to drive downstream applications such as coordinate measuring and manufacturing.

For documentation and long-term archiving purposes, the Polyline Presentation approach was suggested and developed by the LOTAR project group. It presents the PMI within the 3D model, broken down into lines and arcs, so that looks exactly as generated by the native system.

2.1.2 Approach

The approach to be used is described in the latest working draft (at least version 3.5, dated November 1, 2012) of the “Recommended Practices for PMI Representation & Presentation”, which can be found in the member area of the CAx-IF web sites under “Information on Round31J of Testing”.

Within the “Polyline Presentation” area, the following functionalities are in scope of R31J:

- Polylines presenting stroked, outline and filled fonts
- Saved Views
- Section View
- PMI Validation Properties

The files shall be in either AP203 Ed.2, AP214 Ed.3 or AP242 format.

2.1.3 Testing Instructions

A dedicated test model has been developed by Alain Roche, which is prepared for the definition of Section Views. All members participating in this test are asked to add the scope they support to the model as described below.
2.1.3.1 Test Model

For the testing of Polylines and Views, a dedicated test model has been developed in Round28J. The model is provided in the member area of the CAx-IF homepage, under “Information on Round28J of Testing,” in two formats:

- A native CATIA V5 model (*.CATPart)
- A STEP file containing the geometry (*.stp) for re-creation of the model with PMI and views in other CAD systems

The detailed description of the PMI and Views to be added can be found in Annex A of the Round28J Test Suite document.

![Illustration of the PP3 Model](image)

Figure 1 : Illustration of the PP3 Model

2.1.3.2 Test Model Configuration

The following functionality shall be included in the test file provided for this round of testing, as far as it has been implemented by the CAx-IF participants and is described in the Recommended Practices:

- Polyline Presentation – include the PMI elements as Polyline annotations. Stroked, outlined and filled fonts (and combinations) are allowed, as well as styling of the annotations (colors). The type of Polylines used (3D or Filled) shall be stated in the “scope” field of the statistics.

- Definition of “Saved Views” – as far as supported, include at least one saved view in the model, which contains a subset of annotations in the file, and provides a pre-defined position of the model in the design space. Further recommendations:
One of the views should be a “detail view”, which does not show the entire model but only part of it by zooming in. This is to validate the “zoom factor” agreement reached during the R25J meeting (see section 9.4.2 in the PMI Rec.Pracs. v3.5).

For each view, a screenshot showing the model layout (displayed elements, orientation, zoom) shall be provided. **Note** that it is possible to attach several screenshots to one set of statistics in CAESAR. The name of the view shall be given as description for the screenshot.

Both “basic” and “advanced” view implementation is allowed.

As far as supported, the section views as defined in Annex A of the Round28J Test Suite shall be added to the model. Screenshots for these views are essential.

- Cross-highlighting of annotations and annotated shape – if supported, include in the STEP file the information necessary to maintain the association between annotations and the annotated shape elements in a way, that after import, when highlighting an annotation, the shape elements annotated by it are highlighted too, and vice versa.

PMI Validation Properties for Polylines – if supported, include the validation properties in the files, and evaluate these after import:

- “Polyline Curve Length” (section 10.3.1 in the PMI Rec.Pracs. v3.5)
- “Polyline Centroid” (section 10.3.2)
- “Equivalent Unicode String” (section 10.3.3)
- “Affected Geometry” (section 10.3.4) – **Note**: This has not been tested yet, but is deemed and important means of validation. All CAx-IF members are encouraged to support this.

Note that for the creation of the Equivalent Unicode String, the mapping as defined by the “Unicode String Project” report (Revision J) shall be used. This document is available in the member areas of the CAx-IF homepages, under “Relevant LOTAR Documents for CAx-IF Testing”.

2.1.3.3 Statistics

For each STEP file exported or imported for the PP3 test case, vendors must submit the corresponding statistics to CAESAR. To do so, go to the [PP3 Data Sheet], and either fill in the web form, or upload a comma-delimited file (.csv) with the data as listed below.

View-related Statistics

Several of the Statistics for this test case a view-related (e.g. number of annotations, positioning/scaling, section view). The statistics cannot evaluate this for all views in the model. Hence, the idea is to select one specific (interesting) view on export and publish its name in the “Saved View” field of the statistics. Then, fill in the other view-related statistics with the values as valid for this particular view. After import, select the view with the name given in the native statistics and again provide the values valid for this view.

Native Statistics

When exporting a STEP file, report what data importing systems should expect to find. For numeric statistics, enter the respective value or ‘na’ if not supported. For other statistics, select either ‘full support’ (i.e. test case and Rec.Pracs. definitions are fulfilled), ‘limited support’ (meaning the implementation does not meet all criteria and issues may be expected on import), or ‘na’ if not supported.
Target Statistics

When importing a STEP file, report the results found after processing the file as described in the table below.

Screenshots

For each Saved View in the model, provide one screenshot which illustrates the layout (displayed geometry and annotation, model orientation, and zoom factor). Give the name of the view as the description of the screenshot.

Note that in order to count the PMI elements for the statistics, as per agreement during the Round 22J Review Meeting, the names of the `geometric_curve_sets` shall be considered.

See Table 13 (section 8.2) in the PMI Recommended Practices (v3.5) for details.

Data Sheet Columns

<table>
<thead>
<tr>
<th>column name</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>The name of the test model, here: ‘PP3’</td>
</tr>
<tr>
<td>system_n</td>
<td>The system code of the CAD system creating the STEP file</td>
</tr>
<tr>
<td>system_t</td>
<td>The system code of the CAD system importing the STEP file. For native stats, enter ‘stp’</td>
</tr>
<tr>
<td>dimension</td>
<td>The number of dimensions processed</td>
</tr>
<tr>
<td>datums</td>
<td>The number of datums processed</td>
</tr>
<tr>
<td>datum_targets</td>
<td>The number of datum targets processed</td>
</tr>
<tr>
<td>tolerances</td>
<td>The number of tolerances processed</td>
</tr>
<tr>
<td>labels</td>
<td>The number of labels processed</td>
</tr>
<tr>
<td>saved_view</td>
<td>The name of the Saved View which is the basis for the view-related statistics</td>
</tr>
<tr>
<td>view_annot</td>
<td>The number of annotations included in the specified saved view.</td>
</tr>
<tr>
<td>view_pos</td>
<td>pass/fail, whether the model orientation and zoom factor stored for the Saved View could be restored successfully.</td>
</tr>
<tr>
<td>section_view</td>
<td>pass/fail, whether the section view (clipping plane and visible portion of the model) was transferred correctly.</td>
</tr>
<tr>
<td>highlight</td>
<td>all/partial/none – whether the cross-highlighting for annotations and annotated shape elements works correctly</td>
</tr>
<tr>
<td>poly_length</td>
<td>all/partial/none – whether the lengths of the Polyline annotation was validated successfully for all, some or none of the given annotations.</td>
</tr>
<tr>
<td>poly_cent</td>
<td>all/partial/none – whether the positioning of the Polyline annotation was validated successfully for all, some or none of the given annotations.</td>
</tr>
<tr>
<td>eq_unicode</td>
<td>all/partial/none - if the encoding of the equivalent Unicode string was correct for all, some or none of the given annotations.</td>
</tr>
<tr>
<td>valid_poly_vp</td>
<td>pass/fail, is the instantiation of the Polyline-related validation properties in the STEP file as per the PMI recommended practices?</td>
</tr>
<tr>
<td>affected_geo</td>
<td>all/partial/none – whether the affected geometry could be validated correctly for all, some or none of the PMI statements in the model.</td>
</tr>
</tbody>
</table>
2.2 Model TP3: PMI Tessellated Presentation

All information about this test case can also be viewed in CAESAR on its Information page.

2.2.1 Motivation

Product Manufacturing Information is required for a number of business use cases in the context of STEP data exchange. Among others, they are a prerequisite for long-term data archiving. In addition, the PMI can be used to drive downstream applications such as coordinate measuring and manufacturing.

For documentation and long-term archiving purposes, the Polyline Presentation approach was suggested and developed by the LOTAR project group. Based on this approach, it was proposed to use the new data model for 3D Tessellated Geometry available in AP242 DIS for a more efficient implementation of graphic PMI annotations, especially in the case of filled characters.

2.2.2 Approach

At the moment, there are a number of documents describing the approaches to be used in this test case. During Round31J, the documentation will be consolidated and merged into a new version of the comprehensive PMI Recommended Practices. Until then, the following documents apply:

- PMI Rec.Pracs. v3.5 – for all aspects concerning graphic PMI presentation (organization, views, validation property mechanism). Available in the CAx-IF Member area under "Information on Round31J of Testing".
- tessellated_pmi_presentation.doc – distributed with the Round31J Kickoff Minutes, for the implementation structure of a Tessellated PMI Annotation.
- Rec.Pracs. for 3D Tessellated Data Validation Properties (v0.3) – definition of validation properties for tessellated geometry, available in the CAx-IF member area under "Information on Round29J of Testing". The tessellated validation properties to be used are: surface area, total length of segments, centroid with the magic string "pmi validation property".

The other validation properties, which are independent of the geometry type used for the graphic PMI presentation (e.g. the "equivalent unicode string") shall applied as usual.

2.2.3 Testing Instructions

Refer to the TP3 Test Model for a detailed definition of the test model to be used.

2.2.3.1 Statistics

For each STEP file exported or imported for the TP3 test case, vendors must submit the corresponding statistics to CAESAR. To do so, go to the [TP3 Data Sheet], and either fill in the web form, or upload a comma-delimited file (.csv) with the data as listed below.
View-related Statistics

Several of the Statistics for this test case are view-related (e.g., number of annotations, positioning/scaling, section view). The statistics cannot evaluate this for all views in the model. Hence, the idea is to select one specific (interesting) view on export and publish its name in the “Saved View” field of the statistics. Then, fill in the other view-related statistics with the values as valid for this particular view. After import, select the view with the name given in the native statistics and again provide the values valid for this view.

Native Statistics

When exporting a STEP file, report what data importing systems should expect to find. For numeric statistics, enter the respective value or ‘na’ if not supported. For other statistics, select either ‘full support’ (i.e. test case and Rec.Pracs. definitions are fulfilled), ‘limited support’ (meaning the implementation does not meet all criteria and issues may be expected on import), or ‘na’ if not supported.

Target Statistics

When importing a STEP file, report the results found after processing the file as described in the table below.

Screenshots

For each Saved View in the model, provide one screenshot which illustrates the layout (displayed geometry and annotation, model orientation, and zoom factor). Give the name of the view as the description of the screenshot.

Note that in order to count the PMI elements for the statistics, as per agreement during the Round 22J Review Meeting, the names of the geometric_curve_sets shall be considered.

See Table 13 (section 8.2) in the PMI Recommended Practices (v3.5) for details.

Data Sheet Columns

<table>
<thead>
<tr>
<th>column name</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>The name of the test model, here: ‘TP3’</td>
</tr>
<tr>
<td>system_n</td>
<td>The system code of the CAD system creating the STEP file</td>
</tr>
<tr>
<td>system_t</td>
<td>The system code of the CAD system importing the STEP file. For native stats, enter ‘stp’</td>
</tr>
<tr>
<td>dimension</td>
<td>The number of dimensions processed</td>
</tr>
<tr>
<td>datums</td>
<td>The number of datums processed</td>
</tr>
<tr>
<td>datum_targets</td>
<td>The number of datum targets processed</td>
</tr>
<tr>
<td>tolerances</td>
<td>The number of tolerances processed</td>
</tr>
<tr>
<td>labels</td>
<td>The number of labels processed</td>
</tr>
<tr>
<td>saved_view</td>
<td>The name of the Saved View which is the basis for the view-related statistics</td>
</tr>
<tr>
<td>view_annot</td>
<td>The number of annotations included in the specified saved view.</td>
</tr>
<tr>
<td>view_pos</td>
<td>pass/fail, whether the model orientation and zoom factor stored for the Saved View could be restored successfully.</td>
</tr>
<tr>
<td>section_view</td>
<td>pass/fail, whether the section view (clipping plane and visible portion of the model) was transferred correctly.</td>
</tr>
<tr>
<td>highlight</td>
<td>all/partial/none – whether the cross-highlighting for annotations and annotated shape elements works correctly</td>
</tr>
</tbody>
</table>
2.3 Model SP3: Semantic PMI Representation

All information about this test case can also be viewed in CAESAR on its Information page.

2.3.1 Motivation

Product Manufacturing Information is required for a number of business use cases in the context of STEP data exchange. Among others, they are a prerequisite for long-term data archiving. In addition, the PMI can be used to drive downstream applications such as coordinate measuring and manufacturing.

PMI Representation relates to the capability to intelligently store the PMI data in the STEP file in a computer-interpretable way, so that it can be re-used for model redesign or downstream applications. Though the definition of the data is complete, it is by itself not visible in the 3D model.

Additional presentation capabilities are needed to display the data in a way that it is visible to the user in the 3D model. Addition of presentation is data is optional in the SP3 test case.

2.3.2 Approach

The approach to be used is described in the latest working draft (at least version 3.5, dated November 1, 2012) of the “Recommended Practices for PMI Representation & Presentation”, which can be found in the member area of the CAX-IF web sites under “Information on Round31J of Testing”.

Within the PMI Representation area, the following functionalities are in scope of R31J:

- PMI Representation
- PMI Graphic Presentation
- Linking of PMI Representation to Presentation
Note: The files shall be in AP242 format, according to the CAx-IF agreement that PMI Representation will be supported solely based on the improved data model available in AP242.

The AP242 schema to be used is the "AP242 DIS MIM Longform EXPRESS schema v1.20", dated November 18, 2012. It can be found in the member area of the CAx-IF web sites under "Information on Round31J of Testing".

2.3.3 Testing Instructions

Two dedicated test models are provided for the testing of PMI Representation, which includes definition of PMI according to the current capabilities. All members participating in this test are asked to add the scope they support to the model as described below.

2.3.3.1 Test Model “1101”

For the testing of PMI Representation, a dedicated test model has been developed by Ed Paff and Bryan Fischer in Round28J. The model is provided in the member area of the CAx-IF homepage, under "Information on Round28J of Testing":

- A STEP file containing the geometry (*.stp) for re-creation in other CAD systems
- Annex B in the Round28J Test Suite document provides the detailed description of the PMI to be added.

Figure 2: Illustration of the SP3 “1101” Model
2.3.3.2 Test Model “16792”

Another test model testing PMI Representation capabilities is taken from ISO 16792. The model is provided in the member area of the CAx-IF homepage, under “Information on Round31J of Testing”, as ZIP file containing:

- A STEP file containing the geometry (*.stp) for re-creation in other CAD systems
- A PDF document (extract from ISO 16792) providing the detailed description of the PMI to be added.

![Figure 3: Illustration of the SP3 "16792" Model](image)

2.3.3.3 Test Model Configuration

The following additional functionality should be included in the test files provided for this round of testing, as far as it has been implemented by the CAx-IF participants and is described in the Recommended Practices:

- **PMI Representation** – the re-usable representation of PMI data should be included in all SP3 models to the extent supported by the native system.

- **PMI Graphic Presentation** – Many CAD systems require some minimal presentation information to be able to handle the PMI data in a model. There are also use case were both PMI representation and presentation data will be included in the same file. Thus, some form of presentation information shall be included in the SP3 test case as well. The test model configuration for the presentation part is similar to the PP3 test case, see section 2.1.3.2.

- **Linking PMI Representation to Presentation** – If a model contains PMI Representation information as well as Presentation data, it is very useful to link the corresponding ele-
ments together, so that a Representation element “knows” by which annotation it is being presented in the model. The approach to create this link is described in section 7.3 of the PMI Rec.Pracs. (v3.5).

2.3.3.4 Statistics

For each STEP file exported or imported for the SP3 test case, vendors must submit the corresponding statistics. To do so, go to the [SP3 Data Sheet], and either fill in the web form, or upload a comma-delimited file (.csv) with the data as listed below.

Native Statistics

When exporting a STEP file, report what data importing systems should expect to find. For numeric statistics, enter the respective value or ‘na’ if not supported. For other statistics, select either ‘full support’ (i.e. test case and Rec.Pracs. definitions are fulfilled), ‘limited support’ (meaning the implementation does not meet all criteria and issues may be expected on import), or ‘na’ if not supported.

Target Statistics

When importing a STEP file, report the results found after processing the file as described in the table below.

Screenshots

If presentation information is contained in the test files, it shall be accompanied by corresponding screenshots. Note that CASEAR allows the addition of more than one screenshot per set of statistics.

Note that in order to count the GD&T elements for the statistics, as per agreement during the Round 22J Review Meeting, the actual STEP entity types (datum, datum_target...) shall be considered.

Data Sheet Columns

<table>
<thead>
<tr>
<th>column name</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>The name of the test model, here: ‘SP3’</td>
</tr>
<tr>
<td>system_n</td>
<td>The system code of the CAD system creating the STEP file</td>
</tr>
<tr>
<td>system_t</td>
<td>The system code of the CAD system importing the STEP file. For native stats, enter ‘stp’</td>
</tr>
</tbody>
</table>
| scope | A short designation of the scope tested in the model. In the case of SP3, recommended values are:
| | o Representation
| | o Representation + [min.semantic / graphic] Presentation
| | o Representation + Linked [… / …] Presentation |
| dimension | The number of dimensions processed |
| datums | The number of datums processed |
| datum_targets | The number of datum targets processed |
| tolerances | The number of tolerances processed |
| labels | The number of labels processed |
| pmi_graphic_pres | all/partial/none – whether the graphic PMI annotations included in the file could be processed correctly |
2.4 Model C2: Geometric Validation Properties and Colors

All information about this test case can also be viewed in CAESAR on its Information page.

2.4.1 Motivation

Geometric Validation Properties are one of the most important and successful capabilities of STEP, which distinguish it from other neutral exchange formats. They allow for the validation of the imported data based on key characteristics calculated by the native system and stored in the STEP file, which are then compared against the results computed for the imported model in the target system. These key values typically are total volume, total surface area and centroid of the model.

Recently, the requirement came up to extend this range of values by adding validation properties for the total length and the centroid of independent curves in the model, i.e. curves that are neither edge curves of solids or faces, nor used in another context (e.g. as a Polyline PMI element). This was tested for the first time in Round28J, using a hybrid model.

Another new capability was added to support the coloring and styling of Points. User-defined points on the model are often used to convey information e.g. about spot welds or inspection reference points.

The C2 test case was originally designed to test coloring of solids, faces, and curves, as well as overriding colors for geometric elements. Coincidentally, the Recommended Practices for this capability have recently been updated as well, as a result of harmonization with the PMI Recommended Practices. Thus, this test case is also for a validation of the updated guidelines.

2.4.2 Approach

For the validation properties, the approaches as described in the "Recommended Practices for Geometric and Assembly Validation Properties", version 3.2, dated December 18, 2012, shall be used.

For the coloring of the model, the approach as described in the “Recommended Practices for Model Styling and Organization”, version 1.3, dated November 27, 2012, shall be used.

Both documents are available in the member area of the CAx-IF homepage, under "Information on Round31J of Testing".

2.4.3 Testing Instructions

In Round31J, the model as described below shall be either re-used or re-created, and geometric validation properties shall be included for volume, area, centroid, and curve length. Styling shall be applied to all model elements.
2.4.3.1 Construction of the Model

This model has originally been used to test solids, surface and curve colors. It was used as “C1” in test rounds 6J – 9J (2000-2002) and 28J (2011). The buildup is quite simple. The following shall be contained in the model, with arbitrary (but reasonable) dimensions:

- A solid (e.g. cube). Recommended colors: solid color yellow; one face with an overriding color (red); one edge with an overriding color (green).
- Several user-defined points on the solid. Recommendation: blue ‘x’, green ‘o’, purple ‘+’.
- A separate face (e.g. square). Recommended color: blue.
- A separate curve (arbitrary). Recommended color: purple or cyan.

Important Note

In Round 31J, the C2 model shall be created as an assembly. The geometric elements shall be the same as in the original C1 model, only that now they shall be put together as an assembly, where the solid, the face, and the curve each are a part.

Validation properties shall be defined on the root node of the assembly, and for each of the parts as far as applicable.

The reason for this change is that the “area” validation property results in the Round 28J tests, where it was found that some but not all systems ignore the face when it is defined within the same part as the solid.

Testing Focus

- For validation properties, it is the new “independent curves” values (length and centroid)
- For colors, it is Point Color & Styling.

Figure 4: Illustration of the C2 model
2.4.3.2 Statistics

For each STEP file exported or imported for the C2 test case, vendors must submit the corresponding statistics. To do so, go to the [C2 Data Sheet], and either fill in the web form, or upload a comma-delimited file (.csv) with the data as listed below.

Native Statistics

When exporting a STEP file, report what data importing systems should expect to find. For numeric statistics, enter the respective value or 'na' if not supported. For other statistics, select either 'full support' (i.e. test case and Rec.Pracs. definitions are fulfilled), 'limited support' (meaning the implementation does not meet all criteria and issues may be expected on import), or 'na' if not supported.

Target Statistics

When importing a STEP file, report the results found after processing the file as described in the table below.

Data Sheet Columns

<table>
<thead>
<tr>
<th>column name</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>The name of the test model, here: ‘C2’</td>
</tr>
<tr>
<td>system_n</td>
<td>The system code of the CAD system creating the STEP file</td>
</tr>
<tr>
<td>system_t</td>
<td>The system code of the CAD system importing the STEP file. For native stats, enter 'stp'</td>
</tr>
<tr>
<td>unit</td>
<td>The unit the model is designed in</td>
</tr>
<tr>
<td>volume</td>
<td>Total volume of all solids</td>
</tr>
<tr>
<td>validation_volume</td>
<td>Total volume of all solids as received via the validation property capability</td>
</tr>
<tr>
<td>valid_vol</td>
<td>pass/fail, is the instantiation of the validation property 'volume' in the STEP file as per the recommended practices for validation properties?</td>
</tr>
<tr>
<td>area</td>
<td>Total surface area of all solids</td>
</tr>
<tr>
<td>validation_area</td>
<td>Total surface area of all solids (entire assembly), as received via the validation property capability</td>
</tr>
<tr>
<td>valid_area</td>
<td>pass/fail, is the instantiation of the validation property 'area' in the STEP file as per the recommended practices for validation properties?</td>
</tr>
<tr>
<td>cx</td>
<td>Centroid of all solids</td>
</tr>
<tr>
<td>cy</td>
<td></td>
</tr>
<tr>
<td>cz</td>
<td></td>
</tr>
<tr>
<td>validation_cx</td>
<td>Centroid of all solids (entire assembly) as received via the validation property capability</td>
</tr>
<tr>
<td>validation_cy</td>
<td></td>
</tr>
<tr>
<td>validation_cz</td>
<td></td>
</tr>
<tr>
<td>valid_cent</td>
<td>pass/fail, is the instantiation of the validation property 'centroid' in the STEP file as per the recommended practices for validation properties?</td>
</tr>
<tr>
<td>curve_length</td>
<td>Total length of all (independent) curves in the model</td>
</tr>
</tbody>
</table>
2.5 Model TS1: STEP 3D Tessellated Geometry

All information about this test case can also be viewed in CAESAR on its Information page.

2.5.1 Motivation

Recently, a number of scenarios have emerged where the transfer of tessellated geometry within a STEP file is desired by the user community. These include explicit representation of 3D composite part shape, where the semantic definition renders a stack of faces and not a solid, or simplified geometric definition where a fully defined B-Rep model is not needed.

In order to support these use cases, Part 42 is currently being updated to replace the old “facetted B-Rep” approach with a data model for tessellated geometry that also allows the transfer of open shells and wireframe models.

3D Tessellated geometry in STEP is not intended to compete with visualization formats. It merely provides a simplified geometry definition necessary to support specific scenarios.
Since especially large and complex geometry typically results in large STEP files, they are often-times compressed using ZIP or a similar mechanism before they are sent to the receiver. Hence, a recommendation has been created to incorporate the compression on export and the inflation on import into the STEP processor, hence creating and handling zipped STEP files with the file extension *.stp.Z. This will be tested together with the tessellated geometry. During this process, the STEP file itself is not being changed, it is only being zipped and can be inflated manually using any ZIP tool.

2.5.2 Approach

The AP242 DIS Schema contains the latest Tessellated Geometry data model. This file is available in the member area of the CAx-IF homepage, under "Information on Round31J of Testing".

Validation Properties for Tessellated Geometry are defined in the "Recommended Practices for 3D Tessellated Data Validation Properties", Release 0.3 dated January 9, 2012. This file is available in the member area of the CAx-IF homepage, under "Information on Round29J of Testing".

These Tessellated Validation Properties shall be computed and stored in the STEP file at the part level for each component in the S1 assembly. They shall not be accumulated at assembly-level.

Instead, it was agreed to use the TVP in combination with the Assembly Validation Properties as defined in section 7 of the "Recommended Practices for Geometric and Assembly Validation Properties", version 3.1 (dated October 19, 2011), which is available on the CAx-IF Homepage under "Joint Testing Information"..

2.5.3 Testing Instructions

In Round31J, the well-known S1 model ("spaceship") will be used to test the transfer of 3D Tessellated Geometry in STEP.

2.5.3.1 Construction of the Model

This test case has been used in a number of previous CAx-IF test rounds, therefore the modeling instructions are not repeated here. If a vendor would like to participate in this test case and does not yet have the model, the construction information can be found in the Test Suite for Round 5J, available in the "Joint Testing Information" area of the CAx-IF web site.

Validation properties for 3D Tessellated Geometry shall be added as far as supported.

The STEP Files for the TS1 test case shall be submitted as compressed STEP files (*.stp.Z) if supported.
2.5.4 Statistics

For each (compressed) STEP file exported or imported for the TS1 test case, vendors must submit the corresponding statistics. To do so, go to the [TS1 Data Sheet], and either fill in the web form, or upload a comma-delimited file (.csv) with the data as listed below.

Native Statistics

When exporting a STEP file, report what data importing systems should expect to find. For numeric statistics, enter the respective value or 'na' if not supported. For other statistics, select either 'full support' (i.e. test case and Rec.Pracs. definitions are fulfilled), 'limited support' (meaning the implementation does not meet all criteria and issues may be expected on import), or 'na' if not supported.

Target Statistics

When importing a STEP file, report the results found after processing the file as described in the table below.
Data Sheet Columns

<table>
<thead>
<tr>
<th>column name</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>The name of the test model, here: 'TS1'</td>
</tr>
<tr>
<td>system_n</td>
<td>The system code of the CAD system creating the STEP file</td>
</tr>
<tr>
<td>system_t</td>
<td>The system code of the CAD system importing the STEP file. For native stats, enter 'stp'</td>
</tr>
<tr>
<td>match_tess_vp</td>
<td>all/partial/none, whether the Tessellated Validation Properties at part-level match for all, some, or none of the components in the assembly.</td>
</tr>
<tr>
<td>valid_tess_vp</td>
<td>pass/fail, is the instantiation of the validation properties for Tessellated Geometry in the STEP file as per the recommended practices?</td>
</tr>
<tr>
<td>children</td>
<td>pass/fail, indicates whether the number of children for each node in the assembly tree matches the AVP value given in the STEP file</td>
</tr>
<tr>
<td>valid_child</td>
<td>pass/fail, is the instantiation of the validation property 'number of children' in the STEP file as per the recommended practices for validation properties?</td>
</tr>
<tr>
<td>notional_solids</td>
<td>all/partial/none, whether the position of all, some or none of the assembly components in the model could be validated throug the 'notional solids' AVP.</td>
</tr>
<tr>
<td>valid_notion</td>
<td>pass/fail, is the instantiation of the validation property 'notional solids' in the STEP file as per the recommended practices for validation properties?</td>
</tr>
<tr>
<td>date</td>
<td>The date when the statistics were last updated (will be filled in automatically)</td>
</tr>
<tr>
<td>issues</td>
<td>A short statement on issues with the file</td>
</tr>
</tbody>
</table>

3 Production Models

3.1 PM28

All information about this test case can also be viewed in CAESAR on its Information page.

3.1.1 Motivation

In an attempt to test the STEP processors on real world models, the CAx Implementor Forum will be testing production parts in this round and future rounds of CAx-IF testing. These production models are characteristic for components and assemblies that are encountered in the aerospace and automotive industries. PDES, Inc. and ProSTEP iVIP member companies and vendors have supplied these models. As they may contain data about current products of these companies, all native and STEP files related to these models have to be handled confidentially and their use is strictly limited to the CAx-IF activities.

3.1.2 Approach

Testing of Production Models focuses mainly on data quality, not on specific functionalities. Assemblies should therefore be exported as a single STEP file. The file format should be either AP214 (IS or 3rd Ed.), AP203 (2nd Ed.) or AP242 (DIS version schema). In order to support quality validation of the Production Model exchange, all vendors shall include the maximum level of Validation Properties they support, and report them in the statistics. PMI may be included as Polyline Presentation, if defined in the native models.
3.1.3 Testing Instructions

The native models as provided by the user companies should be exported to STEP by all participants who maintain a STEP processor for the respective CAD system. The native models are available on the CAx-IF File Repository in the member area. Once there, browse to the subfolder “Round 30J > Production Models”.

3.1.4 List of available models

<table>
<thead>
<tr>
<th>Model name</th>
<th>Stats code</th>
<th>Native System</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.1.5 Statistics

For each STEP file exported or imported for the PM27 test case, vendors must submit the corresponding statistics. To do so, go to the [PM27 Data Sheet], and either fill in the web form, or upload a comma-delimited file (.csv) with the data as listed below.

Native Statistics

When exporting a STEP file, report what data importing systems should expect to find. For numeric statistics, enter the respective value or ‘na’ if not supported. For other statistics, select either ‘full support’ (i.e. test case and Rec.Pracs. definitions are fulfilled), ‘limited support’ (meaning the implementation does not meet all criteria and issues may be expected on import), or ‘na’ if not supported.

Target Statistics

When importing a file, report the results found after processing the file as described below:

Data Sheet Columns

<table>
<thead>
<tr>
<th>column name</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>The name of the test model, here: ‘PM28’</td>
</tr>
<tr>
<td>system_n</td>
<td>The system code of the CAD system creating the STEP file</td>
</tr>
<tr>
<td>system_t</td>
<td>The system code of the CAD system importing the STEP file. For native stats, enter ‘stp’</td>
</tr>
<tr>
<td>unit</td>
<td>The unit the model is designed in</td>
</tr>
<tr>
<td>volume</td>
<td>Total volume of all solids</td>
</tr>
<tr>
<td>validation_volume</td>
<td>Total volume of all solids as received via the validation property capability</td>
</tr>
<tr>
<td>valid_vol</td>
<td>pass/fail, is the instantiation of the validation property 'volume' in the STEP file as per the recommended practices for validation properties?</td>
</tr>
<tr>
<td>area</td>
<td>Total surface area of all solids</td>
</tr>
<tr>
<td>validation_area</td>
<td>Total surface area of all solids (entire assembly), as received via the validation property capability</td>
</tr>
<tr>
<td>valid_area</td>
<td>pass/fail, is the instantiation of the validation property 'area' the STEP file as per the recommended practices for validation properties?</td>
</tr>
<tr>
<td>cx</td>
<td>Centroid of all solids</td>
</tr>
<tr>
<td>cy</td>
<td>validation_cx</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
</tr>
<tr>
<td>cz</td>
<td>validation_cy</td>
</tr>
<tr>
<td>validation_cz</td>
<td>valid_cent</td>
</tr>
<tr>
<td>model_size</td>
<td>dimension</td>
</tr>
<tr>
<td>datums</td>
<td>The number of datums processed</td>
</tr>
<tr>
<td>datum_targets</td>
<td>The number of datum targets processed</td>
</tr>
<tr>
<td>tolerances</td>
<td>The number of tolerances processed</td>
</tr>
<tr>
<td>labels</td>
<td>The number of labels processed</td>
</tr>
<tr>
<td>date</td>
<td>The date when the statistics were last updated (will be filled in automatically)</td>
</tr>
<tr>
<td>issues</td>
<td>A short statement on issues with the file</td>
</tr>
</tbody>
</table>